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The genetics of renal cell carcinoma cantinues to elucidate the
pathways of kidney tumorigenesis. The relationship batween the
VHL gene and clear cell carcinoma, MET and papillary
carainoma, and the families of genes that they regulate,
continues to be unraveled. New hereditary kidney cancer
synedrames, like familial oncacytoma and the Bir~Hogg-Dubé
syndrome, have been identified and the search for the genes
that cause them is under way. Researching the genetics of
these disarders is essential for an understanding of sporadic
kidney cancer genetics. This chapter will review the current
knowledge of the hereditary kidney cancer syndromes, the
genes that cause them, new advances in genetic research and
techniques, and how this information impacts upon diagnostic,
pragnostic, and therapeutic methads of the future. Cur Opin Ural
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BHD Birt-Fogg-Dubé (syndrome)

FCRG familial clear cell renal cell carcinoma
FRQ familial renal encocylema

HCRGE  heraditary clear call renal cell carcinoma
HGF hepatocyte growth factor

HPRG hereditary papillary renal cell carcinoma
LOH loss of heterozygosity

RCG ranai cell carcingma

T8G 1UMOF BUPPIBSSOr gene

VHL von Hippel-Linday (disease)
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introduction

With the advent of the Human Genome Project,
molecular oncolegy will move into a new phase in which
the genetic fingerpring of 2 padent’s tumor may be
exploited for s full diagnostic, prognostic and ther-
apeutic potential. For renal cell carcinoma, which has no
known cure when mertstatie, an understanding of
geneties is particularly relevane. This review focuses on
the genetics of renal cell carcinoma, how the diffesent
epithelial kidney cancers are classified according to
known genetic pathways, and how emerging technol-
ogies may facilitate laboratory to bedside genetic
therapies. Discussed are the hereditary kidney cancer
syndromes, von Hippel-Lindau (VHL) disease, heredi-
tary papillary renal cell carcinoma, and Birt~Hogg-Dubé
(BHIY) syndrome, and how an understanding of these
may impact on sparadic carcinomas and influence their
freatment.

Renal cell carcinomas: genotypes

A great leap in our understanding of sporadic renal cell
carcinomas (RCCs) has come from researching heredi-
tary RCCs, including those seen in VHL. disease,
hereditary papillary renal cell carcinoma (HPRC), BHD
syndrome, and hereditary clear cell renal cell carcinoma
(HCRCE). This work has led to the identification of at
least two genes highly important in sporadic kidney
cancer. Furchermore, the geneties of RCC illuserace
some of the bases of how an imbalance of positive and
negative  genetic signals  favors unregplated  eellufar
groweh and carcinogenesis.

Clear cell carcinoma: inactivation of VHL

The classic model of tumor suppressor genes sUgEests
that lass or inactivation of both maternal and paternal
copies of the tumor suppressor gene (THG) are required
in order to establish a tumar phenotype {1,2], 1n the casg
of hereditary cancers, patients inherit a defective TSG in
every cell (e.g. germline loss) but do not develop tumors
until the other allele becomes mutated or deloted (e.g.
somatic loss). The two<hit hypothesis appeared 0 be
particularly relevant to the most common hereditary
kidney cancer, VHL disease. In unrelated families with
clear cell carcinomas, constitutional translocacion of the
short arms (petite, p) of chromosome 3 was identified
involving the same 3p breakpoint [3-3], Using DMA
markers, the region of ingerest was limited ta 3pdd,
which led o the identification of 4 new gene eommon to
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kidnev cuncer patigncs: the VAL gene [6-8]. VAT s
involved s tanseripon-regudatory complex which
includes elongin B/C and Cul-2 9,101 Multiple roles for
VL. are seill being defined and include regulution of
hypoxia-sensitive genes, angiogenesis, apaptosis, glucose
meeabolism, and growth factor metabolism [11%12-
15,16%17,18].

As the molecular profiles of VHIL and irs pathway
emerge, an  understanding of the basis of VHL
inheritance helps shed light on how sporadic cancers
form. I'wo copies of VHL, like all genes, appear as
distinet hands on a DNA gel reflecting the heterozygous
nature of most human alieles. Patients with VHL
disease, by definition, have inherited a mutated VHL
gene or a VHL gene that is partially or completely
deleted [19,20]. Every cell in a VHL, patient’s hody is
thus haplo-insufficient for VHL. In conerast, DNA from
VHL wmors has hecn shown to rewin the abnormal,
inherited copy and o have lost the nonmnal, unaffected
VHL copy [21%22-25]. Thus, the hetcrozygous twe-
banded DNA pattern on a gel is lost in VHL tumeors.
[.oss of heterozvgosicy (LQH) is thought tw be che
sentinel event, or ‘second hit’, which commits the
narmal but VL haplo-insufficient cell to carcinogenesis
(Fig. 1) [26°]. In sporadic kidney cancer, LOH of VAL
oceurs in the majority of specimens, although the exact
pathway from wild-type (i.e. normal/normal) to LOH
may be distince from that seen in hereditary cases [27-
29,30°). In sporadic cases, it is believed that the “first hit’
or inactivadion of VAL oceurs after an acquired mucation
of either VHL allele. The haplo-insufficient or hemi-
zygous state continues untl the second allele is lost
throngh an  unbalanced chromosomal  translocation,
methylation or, far less likely, a seeond VAL mutation
or deletion [19,21,31,32] (for color figures, see hetp://
www.riedlab.nei.nih.gov/Publications). In the VHL kid-
ney, LOH of the VHL gene can he demonstrated in tiny,
oligocellular cysts but not in histologically ‘normal’
material [22], There is evidence that in a few sporadic
tumors, pathways other than LOH of VAL may play a
role, and a small percentage of lesions in the VHL
kidney may develop chromasomal abnormalities prior to
developing LLOH {30,33-35]. Ultimately it may not
depend on the exact nature or order of the first or secand
hits in familial or sporadic kidnev cancer, bur the
cumulative "hies” which occur thereafter. For chis reason,
early kidney cancers from inherited and sporadic cases
merit seudy w idencify any other changes in the young
cell that oceur after VHL gene inactivation [36]
Described changes in sporadic renal cell carcinoma
include inereased activity of growth promoting genes
(i.e. oncogenes like FHIT, c-for, AP-1 and comye); loss of
cell cvele arrest and cell death genes (e.g. TRAIL, bel-2);
genes promoting angiogenesis (e.g. VEGF, PDGK) and
numerous genes invelved in the regulation of protein,

Figure 1. “Two hit' modsl of tumorigenesls in von HippskLindau
disease

]

VHL

LOH

(@) ‘First hit'. patients with von Hippel-Lindau {VHL) disease inhent a
mutated VL allele {thick black bar an light gray chromoseme 8) and are
thus said to be haplo-insufficient for VHL. (b) In a cell of an affectsd
organ {e.g. kidney), a cytogenetic event{) ocour(s) involving the normal
allele, hare shown as a balanced transiocation involving the g arm of
chromosome 2 (dark gray chromosoma) and the g arm of chromosoma
3 {breakpoint indicated by light arrowheads in (a)]. (c) ‘Second hit': calis
that lose the derived chromosome carrying the normal 3p allele retain
only the abnormel VHL allele, Loss of one parental allele defines loas of
heterozygosity (LOH) and is the obligatory event for tumorigenesis.
What next steps follow are unknown but hold the key to understanding
cancer formation in all tissues.

fatey acids, and cartbohydrates; oxygen radical formation;
genes promoting invasion or metastasis; and genes which
appear to allow the cancer cell to escape identification by
the immune system [35,37-42,43°44-47]. Furthermore,
it may not be the exact number of genes which are
abrnormally on or off in a cancer cell but the sequence in
which these changes occurred that determines a tumor’s
overall clinical behavior. Given the formidable genetic
biology that a cancer cell develops before it becomes
clinically relevant, therapies may need to include more
than replacement of missing function of VAL. In this
aim, the study of other hereditary kidney cancer
syndromes may vield complementary insights applicable
o all clear cell carcinomas.

Papiliary renal cell carcinoma: MET oncogene
activation

In contrase to VHL disease, in which the ‘two-hit’
hypothesis describes the requisite loss of two copies of a
TSG, papillary RCC may follow a different pathway
[48,49]. As in VHI, disease, HPRC tumors are often
bilateral and present with tumors ranging from low to
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higher stage within the same renal unit, Unlike in clear
cell RCCs, no constitutionsl chromosomal translocations
ar germling mutations of the VAL gene were scen in
HPRC family members. Karyotypic analysis of HPRC
cumors revealed that of the few karvotypic abnormalities,
gains of chramesame 7 were most commen [50], A
candidate gone rogion at 7931 was soon identfied which
containg the oncogene MET and which appears mutated
in HPRC members [31]. MET cades for the vellular
reepptor for hepatoryte groweh facor (HGEF), Mutations
of MET in HPRC families give rse to mutane HGIE
regeprors whieh are unable to turn off’ from che
activated sete after HGE binding. HOEF s expressed
in many tssues, appears to be a cellular mitogen,
induges morphelogic changes in responsive cells, and
increases cellular migrarion [52%,33].

Such unchecked positive growth signals could poten-
ally drive HGE-responsive cells into unregulated cell
¢ycling, morphogenesis, and eventual tumorigenesis. In
this way, #ET may function as a positive effector or
oncogene for tumor growth, in contrast to the suppres-
sive effects of the VAL gene in clear cell carcinoma.
MET mutations need not, therefore, require sequential
losses of MET DINA, as with the VHL gene, but rather
only one copy of a defective gene coding for mutant
receptor. Study of sporadie papillary tumors revealed
that most tumors did not have mutations in MET buc
two- to three-fold gains of chromosome 7 or the 7931
region [34]. Thus, in addition to mutant MET receptors
being tumorigenic, gains of DNA coding for normal
MET receptors may be tumorigenic when the result is
increased cellular responsiveness o HGE. This may
explain the relative paueity of MET mutations in
sporadic papillary tumors, reflecting thar gains of normal
copies may be sufficient for the canver causing steps [53]
(for color figure, see hup/fwww.riedlab.neinih, gov/Pub-
lications). "The majority of HPRC families pass on MET
genes with aceivating muatons. A small number of
families wich papillary renal neoplasia, however, have no
detectable MET gene changes. Tumors from non-MET
mucant papillary families often appear histologically
different from those with MET mutations, and may be
clinically more aggressive [56]. The search for the other
gene or genes downstream from MET is cherefore
important for both hereditary and sporadic forms. Loss
of 3p or VHL does not appear in typical papillary lesions,
hawever chromosomal losses of Y, 6q, 9p, 1p, and Xp
have been demonstrated [57,58). Loss of Xp appears to
be associated with a pardcularly fulminant clinical
course. Chromosomal gains are cypically seen with
chroamosomes 7 and 17, and more specifically, the 17p
region, especially those which appear in hemodialysis
patients with acquired cystic Kidney disease [59,60].
Interestingly, the role of p33, the major cell cyele
regilacor found at 17p13.1, has not yet been defined
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conclusively in  sporadic  papillary  or  elpar ROEC
[28,61,62], Some papillary cumors have ineressed ex-
pression of the angiogen, vascular endothelial growth
factor, a8 well as oncogenes like ey and ofs, all thres
of which are upregulated in clear cell carcinomas [63,64),
Such data illustraee thar clear cell and papillary cancess,
associated with loss of che VEL gene and aceivation of
the MET gene, respectively, appear to apise from
different genetic causes but may converge on similar
genes along the pathway w unigue histologies,

Oncogytoma: multiple tumor suppressor

gene candidates

Renal oncocvtomas, benign tumors arising from inter-
calated cells of che cortical colleceing duet, may develop
in patients with familial renal oncocyroma (FRO) [63]
FRO is suspeeted in patients who have bilateral or
multifocal oncocvtomas or among family members who
have histologically verified oncocytomas. Patients with
FRO, who have small, asymptomatic masses, have been
managed with observation, and undergo attempts at
nephron-sparing surgery only when intervention is
necessary. Renal oncocytomas often grow slowly, snd
fortunately patients with FRO uncommenly require
surgery. Therefore, compared to clear cell ar papillary
carcinomas, less is known regarding oncocytoma cyeo-
genetics, Three subgroups of oncocytomas, however,
have been described: those with losses of chromosomes
1 or Y, those with translocations involving 11q13, and
those with more heterogeneous abnormalities, including
menosomies, trsomies, and losses ax 17p, 17q, 10g, and
rarely 3p [56]. These and other chromosomal regions
such as 3q eranslocarions and 14¢ losses figure promi-
nently in sporadic clear cell carcinoma as well, eapecially
3¢, which is amplified in over 80% of clear cell cases
[66*]. Loss of 1p36, which is sgen in 20~-30% of sporadic
clear cell carcinoma and > 50% of most cases of Wilms’
tumor, may cause loss of growth-regulating genes [67).

Chromophobe renal cell carcinoma: loss of muliipie
chromosomes and a near haploid genome

Sporadic chromophobe RCCs are malignant tumors
atising from either cortical collecting duets or their
intercalated cells, which can bave a prolonged or
fulminant course with merastatic potential. Metastases
from chromophobe carcinomas, though rare, tend to be
found preferendally in the liver, unlike clear cell tumaors
that metastasize to regional lymph nodes, lung, bone,
and brain [68,69]. Chromosamal and genomic DNA
analyses have shown that chromophobe tumors are
unique in having a near haploid genome, with frequent
losses of chromosemes 1, 2, 6, 10, 13, 17, and 21 [70].
These mulciple losses have made it difficult to define
the essential genetic ‘hit’ for this discase. A recently
described inherited disorder, however, the BHID syn-
drome, may shed light on this particular neoplasm.
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The BHII syndrome was ofiginally desciibed in familios
who inheritgd a eendeney o develop multiple cutunecus
fibrofolligulamas  and  wrichediscamas, benign lesions
diseributed about ehe fage, neck, back, and chest [71].
Recont seudies of affected families confirm the auto-
somal dominant natuse of the disorder, and suggest that
the discase also predisposes to lung cyses, spontaneous
prnewmotherax, and multifocal or bilaterul renal cancers.
The renal lesions removed from patients wicth BHID
syndrome are primarily chromophobe RCCs, although
clear cell tumors and hybrid ¢hromophobe/oncocytic
tumors are also commaonly found [C. Paviovich (Johns
Hepkins, USA), personal communication]. Thus, chro-
moephohe carcinama, like tumors in VL, HPRC, and
FRO fumilies, may arise from a gene that may bhe
mutated either sporadically or in inherited fashion,
Positional  cloning  efforts  using  muldpoint  linkage
analysis of BHD families, and the study of BHD tumeor
cytogenerics, may lead to the identification of a new
kidney cancer gene.

Hereditary and familial ciear cell renal cell carcinoma

Cases of ¢lear cell renal cell carcinoma appear as clusters
in some families who do not have mueations in VHL or
MET [72,73°]. Constitutional, balanced rtranslocations
involving chromosome 3 have been identified in some of
these families (Hereditary or HCRCC) [3,72,74], while
normal karyotypes are found in other families (Familial
or FCRC). Chromosomal analysis of families with
predispositions to clear cell RCC reveals lide to
differentiate them from sporadic renal tumors, bue
germlineg balanced translocacions lead to loss of deriva-
tive chromosome 3 in the renal tumaors [21°]. These
syndromes may thus predispose o RCC by increasing
the chances of a tumorigenic mutation in a renal
epithelial cell. The study of family members of HCGRCC
and FCRC families and their tumors may lead to the
identification of genes which are important in VHL-
related and unrelated sporadic clear cell carcinomas.

Renal cell carcinoma research: new
techniques of discovery

Advances in DNA and chromosomal analysis, imaging,
and microchip technology, and publication of the DNA
sequence of the entire human genome create an
unpsralieled opparuniey  for  discovery. Cyrogenetic
resgarch of the past relied upon classic G-banding of
chromosomes, a notoriously chalienging endeavor with
solid tumor karyotypes. Spectral karyotyping, described
in 1996 and only now applied w RCCs, allows the
simuleancous visunlization of all chromosomes in unique
colors [30%,75] (for color figure, see hup:/fwww.riedlab,
nei.nih.gov/Publications). Speceral karyotyping is invalu-
able in identifying chromosomal breakpeints that were
oo complex or subtle for mraditional techniques and
refine the search for new genes [76]. Compurative

genamic hybridization allows one 1o assess  which
chromosomal segiens are gained or lost in tumors
[30°,66°77°]. A combination of spectral karyoryping
and comparative genomic hyhridization daga, 1n an
Internet-accessible database, has tremendous diagnostic
and prognostic potential (see interngtional ingeractive
darabase ar hepi/fwww.ncbinim.nil. govisky/skyweh.e-
gi). Microarrays of ¢DDNAs allow the simulianeous
assessment of thousands of genes, or in the case of
tissue microarrays, hundreds of tumar samples [78,79].
Now researchers have the wols o understand the cancer
gell in real dme: the simultaneous interaction and
clustering of gene expression patterns to provide a
cancer cell with a growth advantage.

Renal cell carcinoma therapy: bench

to bedside

There is no medical cure for all patients with RCC and
only patients with organ-confined disease who undergo
nephrectomy will uniformly experience longsterm survi-
val, Of all therapies for metastacic disesse, only 1L-2
based immunotherapy is currently approved by the US
Food and Drug Administracion for trestment of this
disease. Therefore, better therapies are required for
almosg all patients, including even those who are surgieal
candidates. Molecular targeddng based therapy has the
attraction of targeeing the cancer for what causes it a
dysregulation of genes important to kidney homeostasis.
[t is too early to tell whether or not replacement of che
function of missing VAL or a moelecular blocking of MET
action will be sufficienc to arrest eumor groweh. Although
causal for tumor formation, VAL and MET are certainly
among many genes that have become dysregulated by
the time tumors reach clinical significance. An alternative
approach would be the design of cherapies to make
RCCs more susceptible to conventional therapies such
as radiation or chemotherapy, against which RCCs are
notoriously refractory. Preliminary molecular targeting
studies suggest that such strategies may enhance
immune-cell mediated tumor killing and sensitivity te
alkylating agents [80-85]. Promising recent reports of
immune-based therapy have relied on cell-based rather
than molecular therapies. As recently demonstrated by
two groups, approximately 40% response rates in
metastasic RCC have been shown using non-myeloa-
blative stem cell transplancation or allegeneie dendride-
cell tumor cell fusion vaceines, These strategies may in
the future be further improved with additional genetic
manipulation [86°°,87].

Conclusion

Prior to the identification of the VHL tumor suppressor
gene, little was known abour the geneties of sporadic
clear cell RCC. We know now that a majority of clear cell
carcinomas develop in association with loss of function of
both copies of VHI.. Correspondingly, we know now that
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some papillary RCCs asise ehrough unchecked growth
stimulation vis mutted or extra copies of the MET
hepatocyte growth facror recepror. 5o00n, a third gene
inherited by patenes wicth chromophobe-type carcinemas
may be deseribed. None of these discoveries would have

been possible without the dewiled study and cure of

putients with inherited kidney cancer syndromes in
which chese genes figure so prominendy. With the
idencification of such hereditary genes, the complex
biology of sporadic kidney cancers will be slowly
unmaveled. The next froner of kidney cancer geneties
will be che isolation of new timor suppressor and
oncogenes and cheir modifiers, the definition of how
they interact in real time, and the sequences in which
their dysregularion defines tumor phenotype and clinical
course. In this way, the true diagnostic, prognosdie, and
therapeutic potential of kidney cancer genetics can be
realized,
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