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p40-phox is a newly isolated cytosolic component of the
nicotinamide adenine dinucleotide phosphate (NADPH)-oxi-
dase that copurifies with p67-phox. Although its function is
not well defined, preliminary evidence indicates that it is a
component of the cytosolic complex. We report the charac-
terization of the human p40-phox gene, which is single copy
and spans approximately 18 kb with 10 exons. Based on
fluorescent in situ hybridization (FISH) studies and analysis
of somatic hybrid cell lines, the chromosomal location of
p40-phox is human chromosome 22¢13.1. The start of tran-
scription has been mapped to bp —156. The expression of

HE NICOTINAMIDE adenine dinucleotide phosphate
(NADPH)-oxidase is a multicomponent enzyme Sys-
tem responsible for the oxidative burst in which electrons are
transported from NADPH to molecular oxygen, generating
reactive oxidant intermediates.'” The NADPH-oxidase is
dormant in resting cells, but upon activation is assembled at
the membrane.’ At the time of activation, the cytosolic com-
plex associates with the membrane subunits of the cyto-
chrome b-245, gp91-phox, and p22-phox.® Studies of pa-
tients with chronic granulomatous disease, (CGD), an
inherited disorder of phagocytic cells, have unequivocally
established the importance of at least two cytosolic factors,
pd7-phox and p67-phox.*'" The absence of either prevents
generation of superoxide by the NADPH-oxidase and clini-
cally results in the CGD phenotype.''”"" Several other cyto-
solic components, which may participate in the activity of the
NADPH-oxidase, have been identified and include a small G
protein (known as rac2 in humans), rho-GDI, and p40-
phox."* In the celi-free system, which is used to measure
the end stage signal transduction and assembly of NADPH-
oxidase factors at high concentrations, p40-phox and rho-
GDI are not absolutely required, whereas p47-phox, p67-
phox, and either of the rac proteins, rac 1 or rac 2 are
needed. ™!
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p40-phox message is restricted to hematopoistic cells. In
addition to identifying the mRNA transcript on Northern blot
analysis in cells known to express components of the
NADPH-oxidase, polymorphonuclear leukocytes, mono-
cytes, B lymphoblastoid cell lines, and eosinophils, p40-phox
is also expressed in two other cell types of white cell lineage,
mast cells, and basophils. In addition, the mRNA for p40-
phox is expressed in megakaryocytic cells, but not in ery-
throid cells.

© 1996 by The American Society of Hematology.

p40-phox, a new component of the NADPH-oxidase, was
initially isolated from the cytosol of neutrophils and mono-
cytes.”*> The published cDNA sequence of p40-phox shows
a 1.2-kb message that encodes for a protein of 339 amino
acids.'® Although the specific function of p40-phox has not
been defined, several observations suggest that it may be
important for the assembly and/or activation of the NADPH-
oxidase complex in whole cells. During partial purification
of the cytosolic oxidase components with gel-filtration and
anion-exchange chromatography, p40-phox was eluted with
a 250 kD complex. The three proteins, p47-phox, p67-phox,
and p40-phox remained complexed during the anion-ex-
change chromatography. The p67-phox/p40-phox complex
can be immunoprecipitated from normal and p47-phox—de-
ficient cytosol. In addition, the relative amount of p40-phox
protein detected in p67-phox--deficient CGD patients was
substantially reduced. leading the investigators to suggest
that p40-phox primarily associates with p67-phox.”’

Analysis of the nucleotide and amino acid sequence of
p40-phox indicates homology with the N-terminus of p47-
phox."” More importantly, p40-phox has an SH3-like domain
that shares approximately 30% homology with the SH3 do-
mains of both p47-phox and p67-phox. SH3 domains have
been reported to be putative binding sites for p47-phox and
p67-phox in the assembly of the NADPH-oxidase.”* The
SH3 domain of p40-phox binds to p47-phox in the C terminal
region, but not its SH3 domain and interacts with the p67-
phox in the yeast two hybrid system, providing evidence
that p40-phox may be important for the assembly of the
NADPH-oxidase system.”

The gene structure for four genes of the NADPH-oxidase,
gp91-phox, p22-phox, p47-phox, and p67-phox has been
published ™ Recently, it has been determined that the p47-
phox gene has 11 exons and not 9, as originally reported.”!
The identification of the gene structures has permitted de-
tailed molecular analyses of CGD patients of the four classi-
cal types. To date, analysis of CGD patients throughout the
world has shown that three of the four types of CGD display
a heterogencity of mutations scattered throughout the genes
of gp91-phox, p67-phox, and p22-phox.' The molecular epi-
demiology of p47-phox--deficient CGD differs from the
other three in that nearly all patients studied are homozygous
for a GT deletion at the beginning of exon 2.°%%
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Here we report the structure of the gene for p40-phox and
demonstrate its location on human chromosome 22q13.1.
The immediate 5’ upstream region has been characterized
and the start of transcription has been mapped to bp —156
(relative to the start of translation). The tissue specificity of
the p40-phox gene expression is restricted to hematopoietic
cells. We have determined that p40-phox is expressed at the
message level in mast cells, basophils, eosinophils, and also
in megakaryocytes. Furthermore, p40-phox mRNA is detect-
able in early undifferentiated myeloid cell lines.

MATERIALS AND METHODS

Isolation of genomic clones for the p40-phox gene. Genomic
clones of the human p40-phox gene were isolated by screening a
human genomic library (Embl3A) with a full-length cDNA probe
labeled by random primer method. First strand cDNA was synthe-
sized from RNA extracted from normal human monocytes using a
commercial kit (Boehringer Mannheim, Indianapolis, IN) with avian
myeloblastosis leukemia virus reverse transcriptase (RT) (C. Carter,
Department of Transfusion Medicine, National Institutes of Health,
Bethesda, MD). The cDNA probe for the screening of the genomic
library was generated by polymerase chain reaction (PCR) using
two unique oligonucleotides ATGGCTGTGGCCCAGCAGCTG
and TCATGGCATCGTGTTGTAGACCCT from first-strand
¢DNA. The buffers and concentrations were used according to the
manufacturer (Perkin-Elmer, Norwalk, CT). The conditions for the
PCR reaction were as follows: 30 cycles of 94° for 1 minute, 55°
for 1 minute, 72° for 2 minutes, followed by a 7-minute extension
at 72°C. The PCR product was subcloned into the TA-vector, pCRII
(Invitrogen, La Jolla, CA). The sequence was confirmed by the
dideoxynucleotide chain termination method and compared with two
separate clones isolated during the initial screening reported by
Wientjes.' A total of 1.5 X 10° clones were lifted on nitrocellulose
filters and hybridized overnight at 42°C in 50% formamide, 6 x
SSC (saline sodium citrate solution), 50 mmol/L NaPO, pH 7.0,
0.1% sodium pyrophosphate, 6x Denhardt’s solution, 0.1 mg/ml.
salmon sperm DNA, and 0.1% sodium dodecyl sulfate (SDS). Four
consecutive washes were performed at 42°C in 2x SSC, 1x SSC,
0.5X SS8C, and 0.2 SSC. Two separate genomic phage clones were
purified and analyzed by Southern blot analysis using unique, end-
labeled oligonucleotide probes corresponding to the published cDNA
sequence and by direct sequencing of subcloned fragments.

A single P1 clone was isolated from a diploid human P1 library
(Human Genome System, Inc, St Louis, MO) by a PCR-based
method of screening with two oligonucleotides, F7, GTGAAGATC-
CTCAAAGACTT and R6, GAGATCTTCCTCCACCGCGA, which
generated a 380-bp fragment spanning exon 8/intron 9. Sequencing
of this clone was performed to confirm intron/exon boundaries using
two different methods, direct sequence analysis and sequence analy-
sis of subcloned fragments of P40-1 into either pBluescript KS+
(Stratagene, La Jolla, CA) or pCR-TI (Invitrogen). A preliminary
restriction map was constructed and used to confirm the findings of
the analysis of the phage clones.

Analysis of genomic map and intron-exon borders. Intron-exon
borders were identified by DNA sequence analysis using dideoxy-
nucleotide chain termination method. Intronic sequences were con-
firmed by both Southern blot analysis and PCR-generated fragments,
which were subcloned and sequenced using oligonucleotides gener-
ated during the analysis.

Mapping the start of transcription. Primer extension was per-
formed as follows. An oligonucleotide, PR4, TCACCTCTCACT-
TCCTCCAGCCAC complementary to the sense cDNA strand be-
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ginning at bp —61, upstream of the start site of translation, was
labeled with *P-adenosine triphosphate (P-ATP) and polynucleotide
kinase to a specific activity of approximately I X 10° cpm/ug. A
total of 5 X 10° ¢cpm of probe was hybridized to total RNA from
normal human monocytes and dimethylformamide (DMF) induced
PLB-985 cells at 50°C for 1 hour in 12 yL of 100 mmol/L. KCL/10
mmol/L MgCl,/25 mmol/L Tris HCI pH 8.5.7 The reverse transcrip-
tion reaction was initiated in a buffer containing 30 mmol/L KCl, 8
mmol/L. MgCl,, 50 mmol/L Tris HCI (pH 8.5), 500 gmol/L. ANTP,
25 mg of actinomycin D per mL, 4 U of RNasin and 50 U of avian
myeloblastosis virus reverse transcriptase for 90 minutes at 42°C in
a shaking bath. After ethanol precipitation, samples were resus-
pended in a formamide buffer, boiled, and analyzed on a 6% acryl-
amide/8 mol/L urea gel.

Northern blot analysis. Total RNA was isolated using RNAzol
(Tel-Test, Inc, Friendswood, TX) from 18 different human tissues
(Clontech, Palo Alto, CA). Further characterization of the expression
of hematopoietic cells was performed with total RNA extracted from
normal human monocytes, neutrophils, and ecsinophils, RNA was
extracted from the following cell lines, two separate B lymphoblas-
toid cell lines (one derived from a normal individual and a patient
with p47-phox --deficient CGD), three myeloid cell lines, U937,
THP-1, and PLB-985, the T-cell line H9, basophilic-derived cell
line KU 802, mast cell-derived cell line, HMC1, the erythroleukemia
cell line, K562 (treated and untreated with hemin), and DAMI (a
human megakaryocytic cell line).”’** In addition, we also analyzed
RNA harvested from KU802 and HMCI1 cells treated with phorbol
myristate acetate (PMA) and the ionophore, A23187, for 4 hours.
All RNA samples, except the eosinophils (which were studied by a
RT-PCR assay), were evaluated by Northern blot analysis. A total
of 20 ug per lane of total RNA was loaded onto a denaturing 1%
agarose gel, electrophoresed, and transferred to N+ Hybond (Amer-
sham, Arlington Heights, IL) and ultraviolet (UV) cross-linked. The
RNA blots were hybridized overnight with random primed p40-phox
¢DNA probe and washed according to the following conditions, all
at 42°C, in 2X SSC, 1x SSC, and 0.2 X SSC for 20 minutes each.
Afterwards, autoradiography was performed.

Chromosomal localization.  Aliquots of DNA from human-ro-
dent hybrid cell lines containing different human chromosome(s)
(Coriell Institute for Medical Research, Camden, NJ) were screened
by PCR, using primers F7 and R6 under the conditions described
earlier. The subchromosomal map position was assessed by fluores-
cent in situ hybridization (FISH) analysis. Metaphase spreads were
prepared from methotrexate-synchronized and S-bromodeoxyuridine
(BrdU)-treated cultures® of a healthy donor. Colcemid treatment,
hypotonic incubation, and fixation in methanol/acetic acid followed
standard protocols.*®* P1-DNA was labeled with biotin-16-dUTP
(Boehringer Mannheim) by nick-translation. A total of 100 ng of
labeled DNA were precipitated in the presence of 5 ug of Cotl-
DNA and 10 pg of salmon sperm DNA, resuspended in 10 uL
hybridization solution (50% formamide, 2x SSC, 10% dextran sul-
fate), denatured for 5 minutes at 76°C, and preannealed for 30 min-
utes at 37°C. The probe was then added to previously denatured
metaphase chromosome preparations, hybridized, and detected using
avidin-FITC (Vector Laboratories, Burlingame, CA). The Brd U-
induced R-banding pattern was generated through a fluorescence
photolysis step, followed by staining with propidium iodide.* Fluo-
rescence signals were acquired using a cooled CCD-camera (Photo-
metrics, Tucson, AZ), mounted on a Leica DMRBE-microscope,
and visualized using Gene Join.

Subregional Iocalization of p40-phox was performed with a PCR
assay using 15 somatic cell hybrids from a panel of 26 hybrid cell
lines. Primers, p40-phoxF, GGACATAGCTCTGAATTACCGG and
p40-phoxR, GGCATCGTGTTGTAGACCCT, were designed using
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Fig 1. Gene structure for p40-phox with a partial
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restriction map. The bacteriophage clones were iso-

the program PRIMER (M.J. Daly, S. Lincoln, and E.S. Lander,
Whitehead Institute, Cambridge, MA, 1992) and were used to am-
plify a 174-bp fragment surrounding exon 10. Conditions for the
PCR reaction were as follows: 95°C for 5 minutes, 35 cycles of
94°C for 15 seconds, 62°C for 15 seconds, and 72°C for 1 minute
22 seconds, and a final 7-minute extension at 72°C. The PCR prod-
ucts were electrophoresed on a 1.5% agarose gel and visualized by
ethidium bromide staining.

RESULTS

Isolation of genomic clones and mapping of p40-phox
gene. Two overlapping recombinant Embl3A bacterio-
phage clones, 1L40-1 and L40-2, were isolated from a human
genomic library by screening with a full-length cDNA probe
containing the coding region of p40-phox mRNA (Fig 1). A

lated from a human genomic library using a full-
length p40-phox ¢cDNA probe. The P1 clone was iso-
lated by a PCR technique described in the text.

single P1 clone, P40-1, was obtained and its analysis by
Southern blot and sequencing of PCR products confirmed
the map generated by the overlapping pbage clones. P40-1
extends far upstream of the start of transcription. Analysis
of these three clones resulted in a composite map of selected
restriction sites, confirmed by genomic Southern blots (Fig
1). Exon positions were determined by sequencing of sub-
clones either directly isolated from the phage clones or gen-
erated by PCR using unique oligonucleotide primers identi-
fied during the analysis. Southern blot analysis of normal
genomic DNA digested with the enzymes shown in Fig 1
did not indicate large rearrangements or deletions (data not
shown).

One bacteriophage clone, L40-2, contains a 7-kb insert
that extends from intron 1 to intron 4 and thus. does not

Table 1. p40-phox Intron-Exon Boundary Sequences

5’ Boundary Intron Length 3’ Boundary
32 33
I. CGG GCC GAG AG ghgaghgocggggtgtggeegece-5.8kb~ atctetttteccectectiegeacag T GAC TTT
117 118
II. ACC AGC CAC TTT gtaagacagactctatcttaccaac-0.8kb- toccccacaacctctgtecctecttag GTT TTC GTC
271 272
III. ACACTC CCAG gtaggcggccactecaghtactgetg~2.3kb- aggacagctetitgtetetteteayg CC AAR GTC
342 343
IV. 3CC TAC ATG AAG gtaccagtgggeottgecaccttgg-2.8kb- cggttoctgetgtctcacccacacayg AGC CTG CTC
470 471
V. ACC CGG AAA GT gtaagtgaccagecocctgggetitceco~1.2kb- acaageccectgttetetetecacayg C ARG AGT
528 529
VI. CCG AGA GCA GAG gtaacccocegceococgaegetggeca~0. 6kb~ ctecttactgeacgettctectcecag GCT CTA TTT
627 628
YIL. GAC TGG CTG GAG ghtgagttcagaagtgaggatggag-2.2kb~ tggcatcccttctcticctetgeag GGC ACT GTC
758 759
VIII. AGC ACC ATC AA gtretgtggectgggagggagggge-0.3kb- tcactccagectgtcacccocttag G GAC ATC GCG
824 825
IX. GAG CTC ACA AG gtagggggctygggaatggggctg-1.6kb- attatccctgacttitceccatgecag G CGG GAG TTC

Exonic sequence is indicated in upper case letters and intronic sequence is indicated in lower case letters. Numbers above each exon refer
to the cDNA sequence beginning with the start site of translation. The sizes of the introns are approximate and have been confirmed by both

PCR analysis and Southern blot analysis.
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include either the start site of transcription or translation,
The 3" clone, LA0-1, contains a 13-kb insert, overlapping
L40-2 by 4 kb between intron 3 and 4 and extends approxi-
mately 3 kb into the 3” untranslated region.

Exon-intron structure of coding region of p40-phox. The
structure of the coding region of the gene for p40-phox was
determined by analysis of the phage clones and the P1 clone.
Sizes of exons and introns were confirmed by PCR amplifi-
cation of genomic DNA and fragments subcloned in the TA-
vector, pCRIL The gene spans approximately 18 kb and is
divided into 10 exons (Fig 1). The exon-intron boundaries
were identified by direct sequencing of either bacteriophage
clones or PCR amplified fragments derived from L40-1, L40-
2, and P40-1 (Table 1). All splice junction sequences con-
form to the GT/AG rule. The complete sequencing of all 10
exons confirms a product of 339 amino acids, as predicted
by the translation product of the published cDNA sequence.
The sizes of polypeptide regions encoded by the individual
exons ranged from 11 to 64 amino acids, with the last exon
encoding for the largest span of amino acids. Of note, the
SH3 region, which may play a critical role in interactions
with other components of the NADPH-oxidase, is distributed
between three exons, 6, 7, and 8. Introns varied in size from
300 bases (intron 8) to 5.8 kb (intron 1).

During our analysis, we determined an error in the pub-
lished ¢cDNA sequence for p40-phox in the 5’ upstream re-
gion." The previously published sequence from —60 to
—130 is incorrect with respect to the orientation of the 5’
upstream sequence. [ts position relative to flanking se-
quences could not be verified in our genomic clone or in
PCR amplification of this region from normal human geno-
mic DNA. A second cDNA clone from the original screening
was obtained and analyzed. Its sequence matched the geno-
mic P1 clone isolated, as well as material amplified from
normal human genomic DNA. The sequence for the open-
reading frame was identical to the previously published se-
quence. On further analysis, the published sequence from

Fig 2. (A) Identification of the start of transcription by primer ex-
tension assay. Samples were run on 6% acrylamide/8 mol/L urea gel.
The first eight lanes show a duplicate sequence analysis of the region
above the start of translation using the primer PR4 in the following
orientation T, G, C, A. Two blank lanes separate the sequence analy-
sis from the primer extension assay, which is shown in lanes 1 to 6.
Lane 1, total RNA purified from normal monocyte donor no. 1; lane
2, total RNA purified from normal monocyte donor no. 2; lane 3, total
RNA from DMF-induced PLB-985 (preparation no. 1); lane 4, total RNA
from DMF-induced PLB-985 {preparation no. 2); lane 5, total RNA
from DMF-induced PLB-985 {preparation no. 3); lans 6, tRNA control,
fane M denotes the RNA Century Marker {Ambion, In¢c, Austin, TX).
The major site for the start of transcription is indicated by the upper
arrow. The lower arrow illustrates a possible secondary site. (B) 616
base pairs of the 5’ upstream sequence for pa0-phox. The start of
transcription is indicated by an arrow. Consensus binding site for
AP-2 and NF-E1 are underlined at bp —457 to —468 and —425 to —431
according to the start of translation. A correction of the published
cDNA sequence™ for the 5’ upstream region is highlighted with a
dotted underline and includes the region corresponding to —60 to
—130 from the start of transiation. The primer, PR4, used for sequence
analysis and primer extension analysis shown in {A} is indicated.
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—60 to —128 matches in retrograde complement the correct
sequence from —28 to —-96. We believe this represents a
cloning artifact. Figure 2B shows the corrected sequence
(underlined) seen in the second cDNA clone, the genomic
clone, and material amplified from normal genomic DNA.
Chromosomal localization of p40-phox.  Screening DNA
from human-rodent hybrid cell lines containing different hu-
man chromosome(s) with a p40-phox-specific PCR assay
indicated that the gene maps to human chromosome 22 (data
not shown). The subchromosomal mapping position of the
P1-clone, P40-1, was determined by FISH to high-resolution
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Fig 3. Hybridization of the biotinylated P1 clones for the p40-phox
gene to a human metaphase spread. The DNA probe was detected
with avidin-FITC and is pseudocolored in yellow. The chromosomes
are counterstained with propidium iodide and pseudocolored biue.
The BrdU-induced R-banding pattern allows for the chromosome and
band identification. The probe hybridized to chromosomal map posi-
tion 22q13. Ideogram of chromosome 22 displays schematically the
G-banding pattern with the 550 band resolution. The bar besides the
ideogram denotes the chromosomal mapping position of the Pi-
clone.

banded chromosomes. To generate a simultaneous fluores-
cent banding for gene mapping studies, we followed the
methotrexate synchronization procedure with subsequent
BrdU incorporation. This procedure shows an R-banding
pattern and allows a band assignment up to the 550 band
level. Fifteen metaphases were investigated: 12 displayed
two hybridization signals on both homologues of chromo-
some 22q13, while three metaphases showed incomplete hy-
bridization, (ie, only one hybridization signal on both homo-
logues or two signals on only one homologue). Thus, the
chromosomal map position of the P1 could be determined
precisely when highly extended chromosomes were evalu-
ated. For fine mapping, we used exclusively chromosome
22 homologues, which were at least 5 um in length. The
signal consistently mapped to chromosome band 22q13 (Fig
3).

Subregional localization of p40-phox on chromosome 22
was accomplished using a subset of 15 somatic cell hybrids
from a panel of 26 hybrid cell lines. The extended panel
divides chromosome 22 into 25 regions or bins and has been
used to map over 300 markers to unique locations on the
chromosome.”® The p40-phox primer pair, p40-phoxF, and
p40-phoxR (sec Materials and Methods), gave a positive
signal in the following cell lines: GM10888, GM11220, CI-
9/5878, AJO9, RAISBE, Cl 1-1/TW, Cl 15-1/PB and no
specific signal for the following cell hybrids: GM11685, Cl-
4/GB, Rad-37a, 514 AA2, GM11221, D6S5, C1-3/5878, and
C1 21-2/PB (47A)%*% These results map p40-phox below
the hybrid breakpoint in D6S5 and above the one in CI-3/
5878, which corresponds to bin 15 of the extended somatic
cell hybrid panel.” Using this PCR amplification technique,
we have independently confirmed the FISH data and provide
greater resolution of assignment to the region, 22q13.1, using
the breakpoints of the somatic cell hybrids.

Characterization of the start of transcription. To define
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the transcriptional initiation site, primer extension analysis
was performed and identified a major start site. The start of
transcription maps to purine G, located at base pair, —156,
upstream of the ATG initiation of translation (Fig 2A). The
band corresponding to bp 156 was seen consistently in six
different experiments with RNA prepared from human normal
monocytes, as well as RNA from differentiated PLB-985 cells.
On two occasions, a second band was observed corresponding
to the A at bp —129. All primer extension experiments were
performed with the primer, PR4, internally labeled and com-
plimentary to the 5’ end of the corrected p40-phox upstream
sequence shown in Fig 2B (see below). A total of 616 base
pairs sequence upstream of the start of translation are reported
(Fig 2B). Sequence analysis of this region shows several nota-
ble features. There is no consensus sequence for either a
TATA or CAAT motif. Three hundred and one bases up-
stream from the start of transcription is a consensus sequence
for AP2 binding and 269 bases upstream of the start of tran-
scription is an NF-E1 consensus binding site.

Tissue distribution of p40-phox. Northern blot analysis
using a full length random primed p40-phox cDNA probe
demonstrates that p40-phox mRNA is restricted to hemato-
poietic cells (Figs 4 and 5). p40-phox mRNA was detected
in PMNs, monocytes, B lymphoblastoid cells, basophils, and
mast cells by Northern blot analysis and eosinophils by RT-
PCR (data not shown). In addition, the p40-phox mRNA
is expressed in a megakaryocytic cell line, a cell type not
previously demonstrated to express NADPH-oxidase com-
ponenis. p40-phox expression is associated with myeloid
differentiation of human leukemia cell lines but interestingly,
in the basophilic and mast cell lines, expression decreased
following treatment with the combination of differentiation
agents, PMA, and the ionophore, A23187. We analyzed the
cell line PLB-985, which possesses biphenotypic potential
(ie, differentiation into monocytes or neutrophils, with PMA
or DMF, respectively). There was no significant increase in
p40-phox mRNA levels following treatment for 4 days with
either agent (Fig 5).

DISCUSSION

p40-phox is encoded by a single-copy gene that encom-
passes 18 kb and consists of 10 exons. Knowledge of the
genomic structure will serve as the foundation for studying
the regulation of p40-phox gene expression in hematopoietic
cells. The localization by FISH of p40-phox to chromosome
22q has been established and the subregional localization
has been accomplished using a PCR-based assay on a panel
of somatic cell hybrids. Using PCR amplification of primers
specific to exon 10, we have regionally mapped human p40-
phox to 22q13.1. These results agree with and refine the
FISH results. Unlike the p47-phox gene, the p40-phox gene
appears to be a single copy.”* Other genes, which have been
mapped to this region, include granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) receptor 3 chain, histone
H1°, hippocampal inward rectifier channel, interleukin-2 re-
ceptor beta, myoglobin, and parvalbumin (Budarf et al, sub-
mitted).

Expression of p40-phox message is restricted to cells of
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Fig 4. Northern blot analysis for tissue distribution of pAa0-phox. A total of 20 ug of total RNA {Clontech} was loaded per lane. The blot was
hybridized with a full-length random primed p40-phox cDNA probe and washed as described in the text. Lanes 1, breast; 2, lung; 3, adrenal;
4, skelotal muscle; 5, kidney; 6, smooth muscle; 7, thymus; 8, testis; 9, prostate; 10, retina; 11, small intestines; 12, spleen; 13, ovaries; 14,
pancreas; 15, heart; 16, brain; 17, uterus; 18, cerebellum; 19, B-lymphobiastoid cell ling; 20, peripheral monocytes.

hematopoietic origin, neutrophils, monocytes, eosinophils,
B lymphocytes, basophils, mast cells, and megakaryocytes.
The pattern of expression of p40-phox included cells of the
classical white cell lineage not known to generate large quan-
tities of superoxide, mast cells, and basophils. In our study,
we were unable to demonstrate the expression of the cyto-
solic NADPH-oxidase components, p47-phox, and p67-phox
in basophils, mast cells, and megakaryocytes (data not
shown). Expression of these two cytosolic factors was lim-
ited to neutrophils, monocytes, B lymphoblastoid cells, and
eosinophils, all of which generate superoxide following acti-
vation of the NADPH-oxidase. p22-phox, (data not shown)
was present in all cell types tested, as has been previously
reported.”™”” Like p22-phox, p40-phox is abundantly ex-
pressed in an undifferentiated human leukemia cell line,
PLB-985, and levels of mRNA do not significantly increase
during differentiation. In this regard, we speculate that p40-

phox may participate in a function in addition to the
NADPH-oxidase.

The major site for the start of transcription has been
mapped to a single base pair, G at bp —156, relative to the
ATG of the start of translation by primer extension. We
cannot exclude the possibility of a second site at bp —129,
shown in Fig 2A. However, we observed this band in only
two of six experiments. Furthermore, the possible second
site was not restricted to a specific source of RNA (cither
normal human monocytes or differentiated PLB-985 cells).
The sequence surrounding the start site of transcription at
—156 bp does not contain a consensus sequence for a TATA
or CAAT box. Several GC rich regions are apparent. In
this regard, the upstream region of p40-phox resembles p47-
phox, which also lacks these DNA motifs in the immediate
upstream region. Ongoing studies will hopefully characterize
the cis-acting elements required for expression of p40-phox

< p47-phox

<«—— p40-phox

1 23 45678 910 1112131415

Fig 5. Expression of p40-phox in hematopoietic cells. A total of 20 ug of total RNA was loaded per lane and probed with a full-length
random primed p40-phox ¢cDNA as described in the text. Lanes 1, normal monocytes; 2, THP-1; 3, U-937; 4, HMC1 (PMA/A23187 treated) (mast
cell); 5, HMC1 control; 6, KUS02 (PMA/A23187 treated) (basophil); 7, KU802; 8, T-cell line; 9, DAMI; 10, K562; 11, PLB-985 (DMF induced); 12,
PLB-985 control; 13, p47-phox-deficient B-lymphoblastoid celi line; 14, normal B-lymphoblastoid cell line; 15, normal monocytes. The top panel
is probed with p47-phox ¢DNA and the bottom panel with p40-phox cDNA.
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in hematopoietic cells, particularly in myeloid and mono-
cytic cells.

Knowledge of the gene structure will be useful in de-
termining if rare patients with a chronic granulomatous dis-
ease phenotype may have a mutation(s) in p40-phox gene.
It will be particularly interesting to investigate patients with
p67-phox deficient CGD who are reported to have decreased
levels of p40-phox protein. Furthermore, the possible dem-
onstration of a mutation in p40-phox gene would further
establish the functional significance of p40-phox in the cyto-
solic complex of the NADPH-oxidase.

NOTE ADDED IN PROOF

p40-phox has been pamed neutrophil cytosolic factor 4
by the nomenclature committee of the Human Genome Data-
base. The human symbol is NCF4,
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